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The aim we are pursuing in this part of our discussion is to go on analysing the
redshift of highly intensive gravitational waves 1.

The reasons why we have been involved in this overall reviewing it, are the
following:

1. more gravitational waves have, in the meantime, reached the detector (par-
ticularly in 2001 and 2002);

2. the evaluation of wave intensity has been improved by the using the amplitude
of its “rebounding” too ;

3. the intensity of the first waves detected by our detector (in 1994) should
be cautiously considered, as the photoresistor had no “formatting” and the
instrument was not yet well set up;

4. in September 2002, a rather “clean” “fork” was detected, which as been used
as reference wave.

However, before going on with the analysis, it is useful to remark a few things
about the propagating of gravitational waves.

1 Propagation of a gravitational wave

In Figure 1 the propagation of a gravitational wave of high intensity caused by
the collapsing of a Multiple Nucleus Quasar (QNM), is schematically represented.

Characteristics of these waves can be indicated as follows.

1. The gravitational wave is a density wave (of the “physical” space) which
propagates with a speed which is inversely proportional to the cubic root of
its density. Namely:

c0 = c∞

(

δ∞
δ0

)1/3

(1)

1See Appendix of A detector for Gravitational Waves: Multiple Nucleus Quasar..
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where, pedex “0” indicates the “local” values, while pedex “∞” the ones
concerning space at “rest” (that is to say with no fields) 2.

It is possible to write (1) also in the following way:

δ0 c0
3 = δ∞ c∞

3 = constant (2)

2. The bodies plunged in a gravitational field, change their dimensions in direct
proportion to the changes of the speed of light of the place they are.

For example, a body which volume at “rest” is V∞ plunged into a gravita-
tional field, where the speed of light is c0 undergoes a decrease of its volume
by:

V0 = V∞

c0
3

c∞3
(3)

If we use (2), we obtain:

δ0 V0 = δ∞ V∞ ≡ mass of space = constant (4)

Therefore, the mass of space into the considered volume does not vary.

In other words, we can say that in a volume which vary “according to the
speed of light” the mass of space (and matter too!) included therein is always
the same 3.

3. Intensity I of a gravitational wave, is directly proportional to the changes of
the speed of light 4:

I ∝ δ∞ c∞
3

c − c0

c0

(5)

therefore, the intensity of a gravitational wave results as directly proportional
to amplitude A, in Volts, of the signal coming from the detector.

2We remind that the values of space “at rest” are the following:

δ∞ = 3 1017 kg/m3

c∞ = 3 108 m/s

therefore, (universal!) constant (2) takes the following value:

constant ≡ δ∞ c∞
3 = 3 1017

(

3 108
)3

= 8.1 1042 kg/s3

3An internal observer, who is “plunged” into the same gravitational field, cannot notice that

the dimensions have changed, and cannot notice that both speed of light and density have changed
as well.

Our CdS detector, on the contrary, behaves like an external observer !
4We can say that this peculiarity is directly resulting from the properties represented by (2).

See Appendix where you can find the corresponding proof.
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4. “Physical” space does not undergo any loss of energy, therefore, the (gravi-
tational) energy of a wave, while propagating, keeps constant (also in case of
very far distances). Therefore, energy U̇ carried per unit of time by a wave
results as corresponding to:

U̇ = 4 π r2 I ≈ constant (6)

2 Redshift

Distance r of the place where collapsing of a nucleus occurred and width T of
the corresponding wave must be corrected for redshift z due to the expanding of
Universe 5. Namely we have:

(

r
)

z=0
≡ r0 =

r

z + 1
(7)

(

T
)

z=0
≡ T0 =

T

z + 1
(8)

Let us consider two collapses that we are indicating with pedex “1” and pedex
“2“), that happened in different places of the Universe. We are going to see that, in
the hypothesis that the two events had the same energetic intensity, it is possible
to calculate both redshifts, starting from the ratio between either amplitude A and
the corresponding width T of the respective “fork”. We can write:

r2
2

r1
2

A2

A1

≡
RU

2 z2
2

(

z1 + 1
)2

RU
2 z1

2
(

z2 + 1
)2

A2

A1

= 1 (9)

where for distances r1 e r2 the previous equation (7) has been used. If we indicate:

Aratio =
A2

A1

wratio =
w2

w1

≡
z2 + 1

z1 + 1

we can obtain the following system of two equations having the two unknown
quantities z1 e z2:

wratio =
z2

z1

√
Aratio (10)

wratio =
z2 + 1

z1 + 1
(11)

5See in this respect, what referred in Matter and Universe: The expansion of Universe.
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Figure 1: Propagation of a gravitational wave
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according to which we can obtain z1 and z2:

z1 =

√
Aratio

wratio1

wratio − 1

1 −
√

Aratio
(12)

z2 =
wratio − 1

1 −
√

Aratio
(13)

In case there are several waves the steps to do are the following. If we replace
(12) and (13) with (10) the following relation between amplitude and widening of
the wave can be obtained:

1
√

Aratio

=
1

wref − 1

(

wref −
1

wratio

)

(14)

where, the following has been indicated:

Aratio =
A

Aref

wratio =
T

Tref

where, Aref and wref are, respectively, the amplitude and the widening of the
reference wave.

For each wave we can report on a graph the value of 1/
√

Aratio as function of
1/wratio. If all collapses had the same energetic intensity, the points thus calculated
should lay on the same straight line, with negative slope, which intersection with
the axis of the abscisses will directly allows to obtain the widening wref of the
reference wave.

Once the redshift wref is stated, the redshift of the other waves can be calculated
using the following equation:

z = wratio wref − 1 (15)

which can be also used to obtain the other parameters. Namely:

• the distance r0 of the nucleus at the moment of collapsing:

r0 = RU
z

z + 1
(16)

where, RU is the radius of the visible Universe, which is related to Hubble
constant H0 and to the speed of light c by the following relation:

RU =
c

H0

(17)
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• the travelling time ∆t of the gravitational wave to reach the detector:

∆t = tH ln(z + 1) (18)

where, tH is the Hubble time defined as follows:

tH =
RU

c
(19)

• the distance r from the place of collapsing, at the moment when the wave
reaches the detector:

r = r0

(

z + 1
)

(20)

2.1 The waves considered in our survey

Ratio wratio between widening is also equal to the ratio of distance T between the
“fork” peaks, therefore it is possible to calculate it quite exactly.

It is, however, more difficult to calculate ratio Aratio of the amplitudes, above all,
because of overlapping of the various waves reaching the detector. It is, therefore,
possible to calculate it rather precisely only if the wave results to be isolated.

In this new analysis, further than the average amplitude Â = (A1 + A2)/2 of
the “fork” peaks, also the average amplitude Ǎ = (A3 +A4)/2 of the “rebounding”
have been considered, as this too is meaningful to indicate the intensity of the
collapse. Furthermore, in this evaluation, also ratio Â/Ǎ, which should keep quite
constant, has been considered.

We are going to give, hereunder, a short description of the waves which were
selected for the present analysis, while Table 1 shows the corresponding values.

Waves N. 1, 2 and 3 These belong to the series of both positive and negative
“forks”, recorded by the detector between May and June 1994 (see Graph

1994 F1).

We have to use these waves very cautiously, as the detector “formatting” was
not completed yet and the instrument was not yet well set up.

Wave N. 4 It is the big “fork” recorded between September and October 1994
(see Graph 1994 F2).

For these wave too, we have to take into consideration what previously stated.

Waves N. 5 and 6 These concern the two, partially overlapping, “forks” recorded
between July and September 1995 (see Graph 1995 F1).

The partial overlapping of these waves creates some uncertainties, especially
in the evaluation of the amplitude of the rebounding.
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Waves N. 7 e 8 These concern the “forks” recorded between July and August
1998 (see Graph 1998 F1).

The uprising front of the first wave and the primary peak show are disturbed
by a sudden lowering of the underlying signal. Therefore, the amplitude of
the peak is more likely represented only by the amplitude of the secondary
peak Â1 = 0.40 V without taking account of the primary peak.

In the second wave, on the contrary, the rebounding only is well visible.

Wave N. 9 This is the “fork” recorded in September 1998 (see Graph 1998 F2).

This wave shows rather “clean”. Only slight oscillations can be seen, probably
due to variations of the sensor temperature.

Waves N. 10 e 11 These waves show a positive and a negative “fork” recorded
between January and March 1999 (see Graph 1999 F1).

The secondary peak of the negative “fork” and the primary one of the positive
“fork” result as overlapped, therefore they could not be taken into account.

Wave N. 12 It is the first “fork” recorded in July 1999 (see Graph 1999 F2).

The amplitude of the secondary peak of this wave could not be considered,
as the sloping down results as being very disturbed.

Wave N. 13 This is the high intensity “fork” recorded from the middle of August
1999 (see Graph 1999 F4).

The uprising front results being disturbed by the secondary peak of the pre-
vious collapse which had not yet extinguished, while the sloping down is
partially “cut” by the oncoming of the second wave which reached the de-
tector on the 24th August. Therefore, it seems more reasonable to consider
for the amplitude of this wave solely the secondary peak (Â1 = 0.80 V ) and
leave off considering the primary one.

Wave N. 14 It is the case of a “fork” recorded in August 2001 where only the
rebounding can be seen (see Graph 2001 F1).

Wave N. 15 This “fork” was recorded between September and October 2002 (see
Graph 2002 F1).

The uprising front of the wave cannot be seen, while the other portion seems
rather “clean”.

2.2 Reference wave

Being unable to consider the “fork” of September/October 1994 (Onda N. 4)
because of the reasons above mentioned we indicate, hereunder, other “cleaner”
waves which are the following:
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Table 1: Values concerning the selected waves

Wave T A1 A2 Â A3 A4 Ǎ Â/Ǎ
N. days V olts V olts V olts V olts V olts V olts -
1 4.0 0.66 0.83 0.745 0.26 0.30 0.28 2.66
2 4.0 0.80 - 0.80 0.36 0.33 0.345 2.32
3 4.0 - - - 0.37 0.40 0.385 -
4 7.5 2.4 2.1 2.25 0.71 0.92 0.815 2.76
5 15.0 0.23 - 0.05 0.11 0.08 0.11 2.88
6 17.0 - 0.24 0.15 0.09 0.12 0.13 2.00
7 4.5 0.40 - 0.40 - 0.15 0.15 2.67
8 4.5 - - - 0.12 0.20 0.16 -
9 6.5 0.34 0.32 0.33 0.11 0.11 0.11 3.00
10 13.0 0.22 - 0.22 0.11 0.08 0.095 2.32
11 12.0 - 0.17 0.17 - 0.10 0.10 1.70
12 7.0 0.32 - 0.32 0.12 0.10 0.11 2.91
13 2.5 0.80 - 0.80 0.26 - 0.26 3.08
14 11.4 - - - 0.14 0.15 0.145 -
15 11.5 - 0.35 0.35 0.16 0.17 0.165 2.12

• Wave N. 8 of September 1998

• Wave N. 12 of August 1999

• Wave N. 14 of September 2002

We have used in our analysis all three waves but, in the end, as reference wave
we have chosen the one of September 2002. Namely:

Âref = 0.35 V olts

Ǎref = 0.165 V olts

Tref = 11.5 days

as it produced a lower dispersion of data (respect to the straight line). In Table2

all data thus obtained are indicated.
In graph of Figure 2 the pairs of values (1/wratio, 1/

√
Aratio) are reported.

The graph shows how all waves but the ones of 1994 are, very likely, situated in a
straight line intersecting the axis of the abscisses at point:

w ≡ wref = 9.5

Table 3lists the parameters concerning the considered waves thus obtained. 6.

6For calculations the following value for the Hubble constant have been considered:

H0 = 25 km/s per million of light − years
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Table 2: Data for redshift analysis.

Wave Âratio Ǎratio wratio 1/
√

Âratio 1/
√

Ǎratio 1/wratio

N. - - - - - -
1 2.139 1.697 0.35 0.69 0.77 2.88
2 2.286 2.091 0.35 0.66 0.69 2.88
3 - 2.333 0.35 - 0.65 2.88
4 6.429 4.939 0.65 0.39 0.45 1.53
5 0.657 0.485 1.30 1.23 1.44 0.77
6 0.686 0.727 1.48 1.21 1.17 0.68
7 1.143 0.909 0.39 0.94 1.05 2.56
8 - 0.970 0.39 - 1.02 2.56
9 0.943 0.667 0.57 1.03 1.22 1.77
10 0.629 0.576 1.13 1.26 1.32 0.88
11 0.486 0.606 1.04 1.43 1.28 0.96
12 0.914 0.667 0.61 1.05 1.22 1.64
13 2.286 1.576 0.22 0.66 0.80 4.60
14 - 0.879 0.99 - 1.07 1.01
15 1.00 1.00 1.00 1.00 1.00 1.00

Table 3: Parameters concerning the selected waves.

Wave w z T0 r0 r ∆t
N. - - days ×109 l.y. ×109 l.y. ×109 years
1 3.3 2.3 1.2 8.4 27.7 14.3
2 3.3 2.3 1.2 8.4 27.7 14.3
3 3.3 2.3 1.2 8.4 27.7 14.3
4 6.2 5.2 1.2 10.1 62.3 21.9
5 12.4 11.4 1.2 11.0 136.7 30.2
6 14.0 13.0 1.2 11.1 156.5 31.7
7 3.7 2.7 1.2 8.8 32.6 15.8
8 3.7 2.7 1.2 8.8 32.6 15.8
9 5.4 4.4 1.2 9.8 52.4 20.2
10 10.7 9.7 1.2 10.9 116.9 28.5
11 9.9 8.9 1.2 10.8 107.0 27.5
12 5.8 4.8 1.2 9.9 57.4 21.1
13 2.1 1.1 1.2 6.2 12.8 8.7
14 9.4 8.4 1.2 10.7 101.0 26.9
15 9.5 8.5 1.2 10.7 102.0 27.0

therefore, as radius of the visible Universe the following value is obtained:

RU =
c

H0

=
300, 000

25
106 = 12 billionlight − years
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The real distance between the “fork” peaks, results as being of 1.2 days. Upris-
ing time of the wave, which is strictly related to the nucleus radius, is of the same
order of magnitude. Therefore, the real radius RN of the nucleus results as:

RN ≈ 1.2 light − days

where the speed of light is the “local” one, still unknown to us 7.
The appearing radius of the nucleus, that is to say as seen by an observer placed

outside to the gravitational field, on the contrary results as follows:

(

RN

)

∞
≈ 1.2 86, 400 300, 000 = 31 109 km

The mass of space collapsing with the nucleus, because of (2), results as easy
to calculate:

4

3
π

(

31 1012
)3

3 1017 = 1.9 1028 M�

As we can see, this mass is larger than the mass of matter forming the Universe!

3 Remarks

1. By using also the “rebounds” a remarkable improvement of the precision of
redshift calculations has been obtained.

2. If compared with the previous analysis, the wave redshift and, therefore,
the distances of the collapsed nuclei have increased. Specifically, due to the
recordings up to now (August 1999), the two collapses the nearest to us, are
now placed at distance practically twice as far, if compared with the previous
data.

3. This analysis, shows evidence that gravitational waves may cover very long
distances without remarkable energy loss and without undergoing meaningful
distortions. The only effect resulting is due to the lowering/widening due to
redshift.

4. It is with surprise that we can remark how this detector succeeds in “seeing”
so well even the waves with very high redshift (z > 10), which were generated
by events happened in the far boundaries of the visible Universe!

7We are going to see better, later on, how it is possible from the wave “dimensions” to calculate
the speed of light on the nucleus surface. It is a very low speed, in the order of one meter per
second!
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4 Conclusion

The analysis of the redshift as presented here takes account of our recordings from
1994 to December 2002, even if we need to be cautious in dealing with the first
recordings.

We will gradually update the present analysis, as long as other waves are
recorded by our detector and new collapses of QNM are detected.

It is worth to notice that the presence of redshift inside these waves, represents
most convincing evidence that what our detector is recording exactly Gravitational
Waves.
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A APPENDIX

A.1 Properties of the “physical“ space

It is well known that relationship between the speed of propagation and the physical
properties (pressure p and density δ) of the medium is represented by the following
equation:

dp

dδ
= c2 (21)

For a gravitational wave, keeping in mind that propagation speed, c, is related
to space density by (1), we obtain:

dp

dδ
= c∞

2

(

δ∞
δ

)2/3

(22)

which, when integrated gives the following result 8:

p − p0 = 3 δ∞ c∞
2

[

(

δ

δ∞

)1/3

−

(

δ0

δ∞

)1/3
]

(23)

(23) can be also expressed as function of the speed, c. If we use (1) we can, in
fact, obtain:

p − p0 = 3 δ∞ c∞
3

(

1

c
−

1

c0

)

≡ 3 δ0 c0
2

c0 − c

c
(24)

which links, directely, the eccess of pressure, p− p0, with the propagation speed, c.

A.2 Density of energy of a gravitational wave

The (gravitational) energy equals the work done to compress the “physical” space.
Therefore, the density of energy, u, of a gravitational wave can be expressed as
proportional to the excess of pressure respect to the indisturbed space. Namely:

u ∝ p − p0 ∝ δ0 c0
2

c0 − c

c
(25)

8(23) can be considered as a sort of state equation for the space, where (at the moment)
temperature still results as missing.

In the future, we will see how it is possible to consider this quantity too in measuring the
Background Cosmic Radiation (CMB), which may provide exact indications about the amount
of matter existing in the Universe.
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A.3 Intensity of a gravitational wave

The intensity, I, of a wave, is related to its density of energy, u, by:

I = u c (26)

Therefore, by using (25) into (26), for a gravitational wave we have:

I ∝ δ0 c0
2

(

c0 − c
)

≡ δ0 c0
3

c0 − c

c0

= δ∞ c∞
3

c0 − c

c0

(27)
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